Week 7: Response Surface Methodology

AIM-5014-1A: Experimental Optimization

Review: LLN, CLT, A/B Testing

- As $N \to \infty$, $\bar{y} \to E[BM]$ (LLN)
 - CLT: $\bar{y} \sim \mathcal{N}(E[BM], \sigma^2)$, "measured BM is gaussian"
- . Design: $N \ge \left(\frac{2.5\hat{\sigma}_{\delta}}{PS}\right)^2$
- Measure: Randomize, $\bar{\delta}=\bar{y}_B-\bar{y}_A$, $se=\sigma_\delta/\sqrt{N}$
- . Analyze: Accept B if $\bar{\delta} > PS$ and $\frac{\bar{\delta}}{se} \geq 1.64$ (check guardrails)
- False Positive Traps: Early stopping, multiple comparisons (use Bonferroni)

Review: Experimental cost

- Experiments are expensive:
 - They take time to run
 - They put users at risk of bad experience
 - They cost money: engineer's salary, lost revenue
- The only way to reduce this cost is to take fewer measurements.
- Research into experimental methods seeks to reduce the number of measurements required to achieve an experiment's goal

- In prod (A): Ranking songs by $p_{\text{listen}} = P\{\text{user will listen until the end}\}$
- In dev (B): Ranking songs by $p_{like} = P\{user will click song's like button\}$
- A/B test the two models?
- Why not use both? Rank by a score:

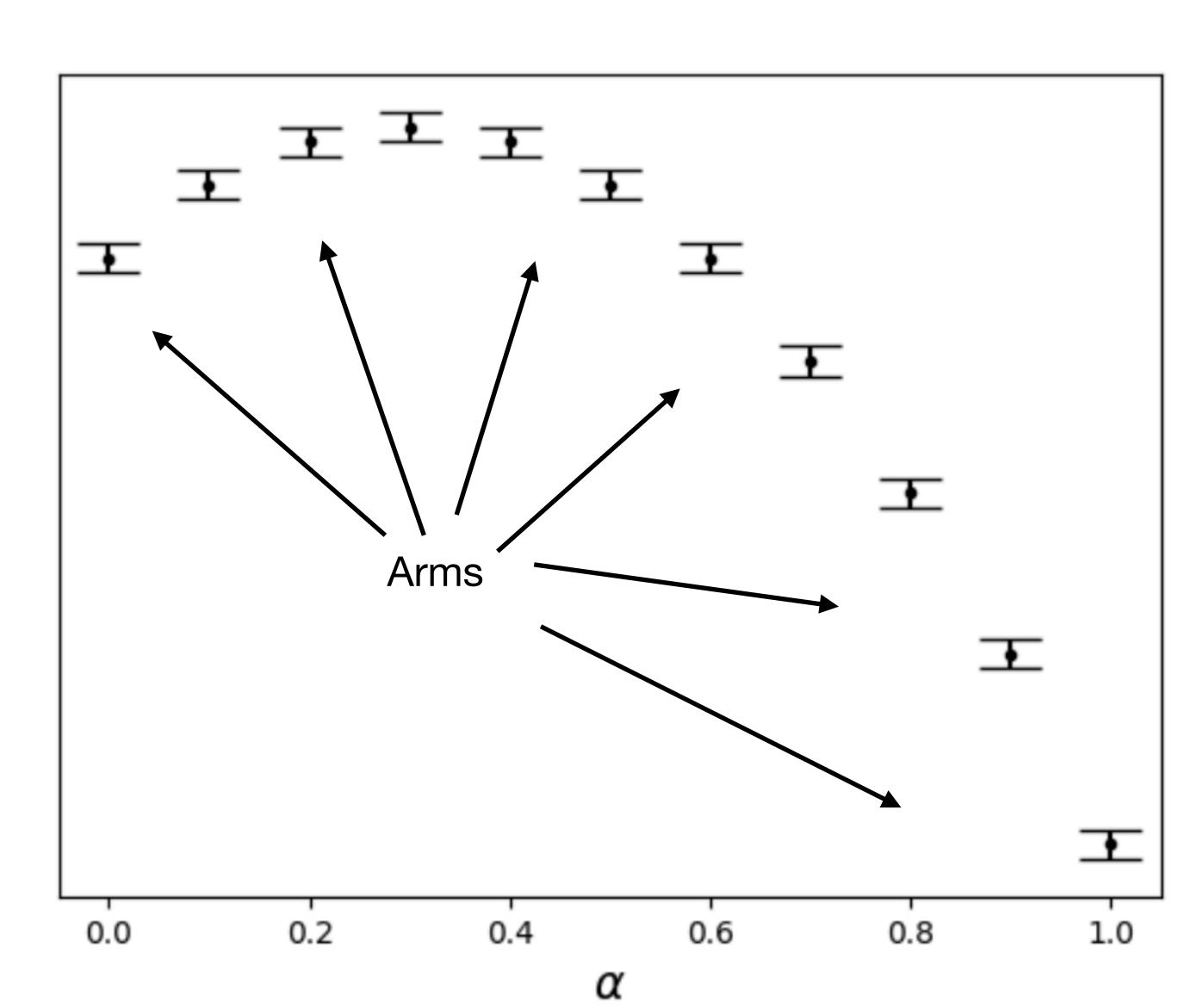
$$score = \alpha p_{\text{listen}} + (1 - \alpha) p_{\text{like}}$$

• Combine models, $\alpha \in [0,1]$

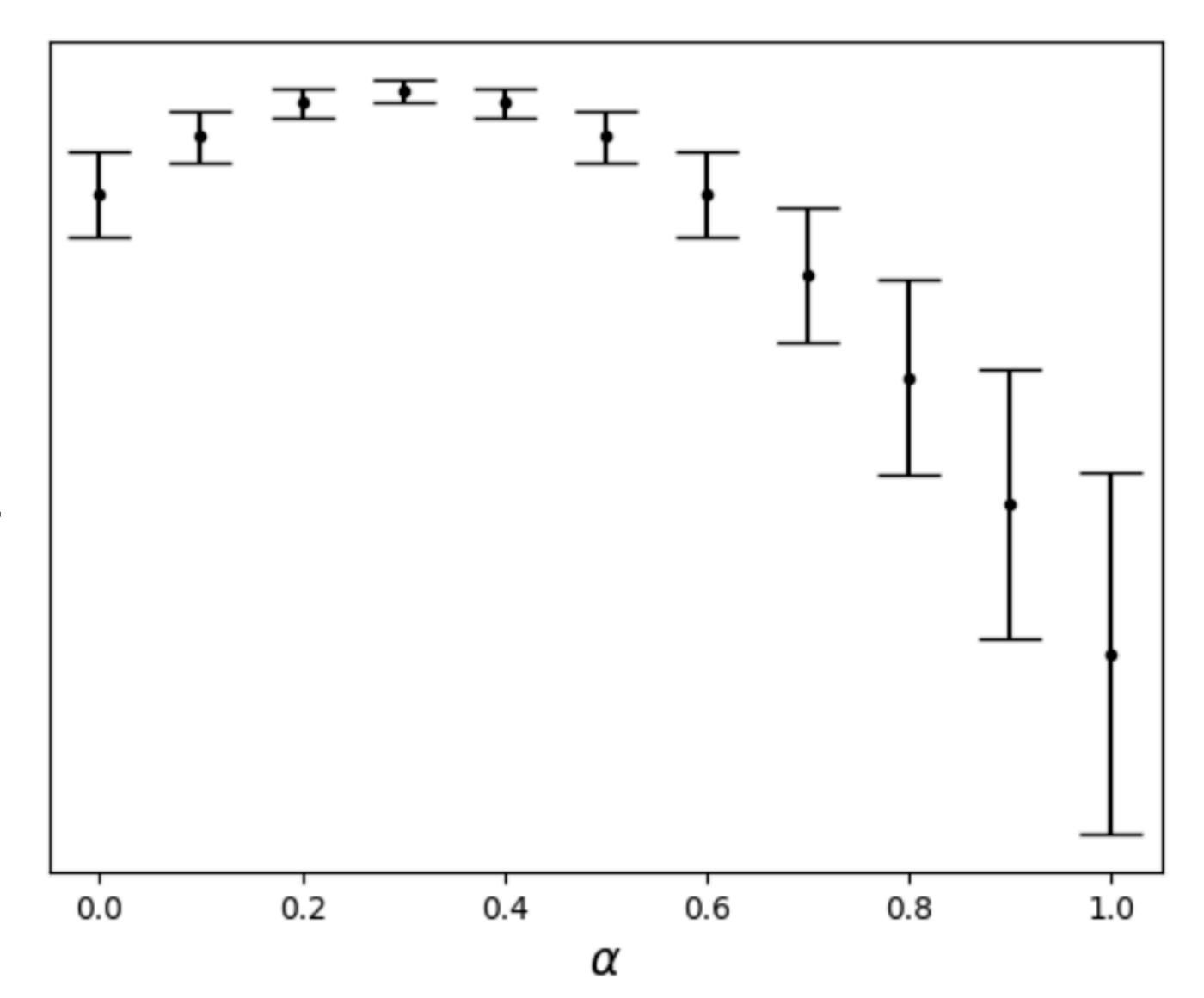
$$score = \alpha p_{\text{listen}} + (1 - \alpha) p_{\text{like}}$$

- Find α that gives highest BM
 - ... via experimental optimization

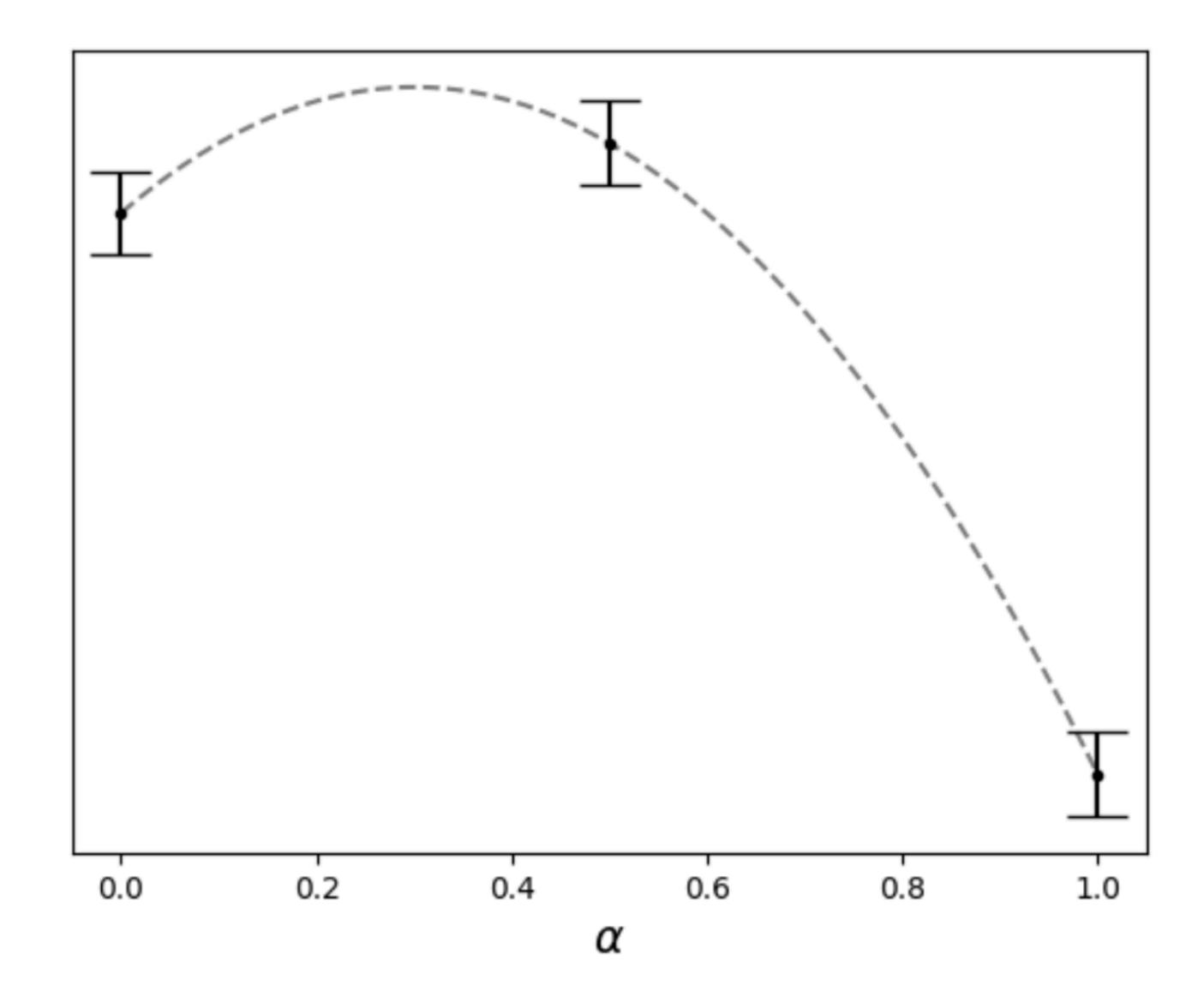
- Approach I: A/B/n test
- Measure $\alpha \in \{0,0.1,0.2,...,1.0\}$
- Req. many observations:
 - Lots of capacity
 - Bonferroni



- Approach II: Multi-armed bandit
- Same number of arms
- Fewer observations than A/B/n:
 - Worse arms are allocated fewer observations



- Measure only three arms: $\alpha \in \{0,0.5,1.0\}$
- Fit a parabola
- Guess/hope that max of parabola is true (expected) max

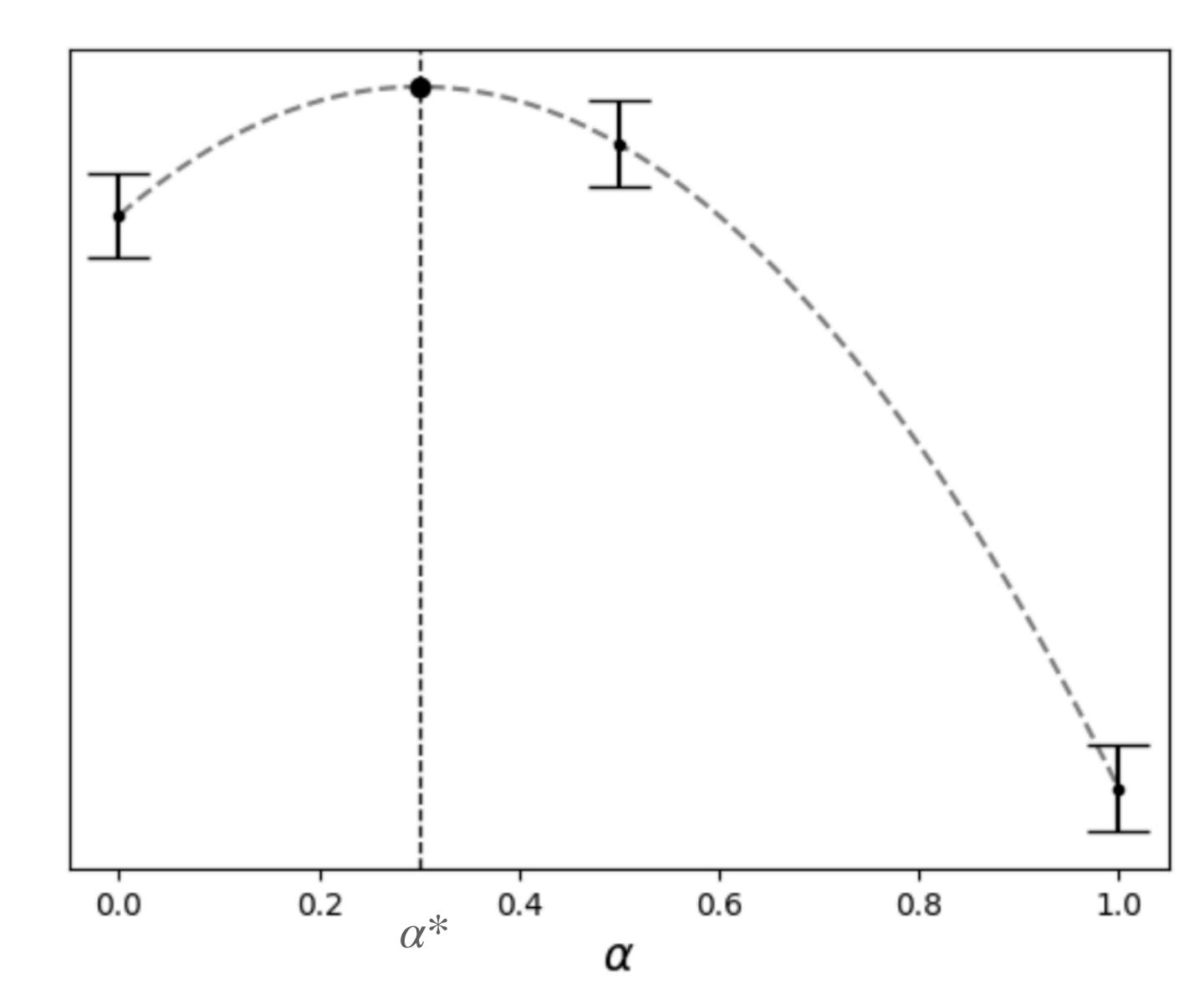


- Max of parabola: $\alpha = 0.3$
- Run A/B test:

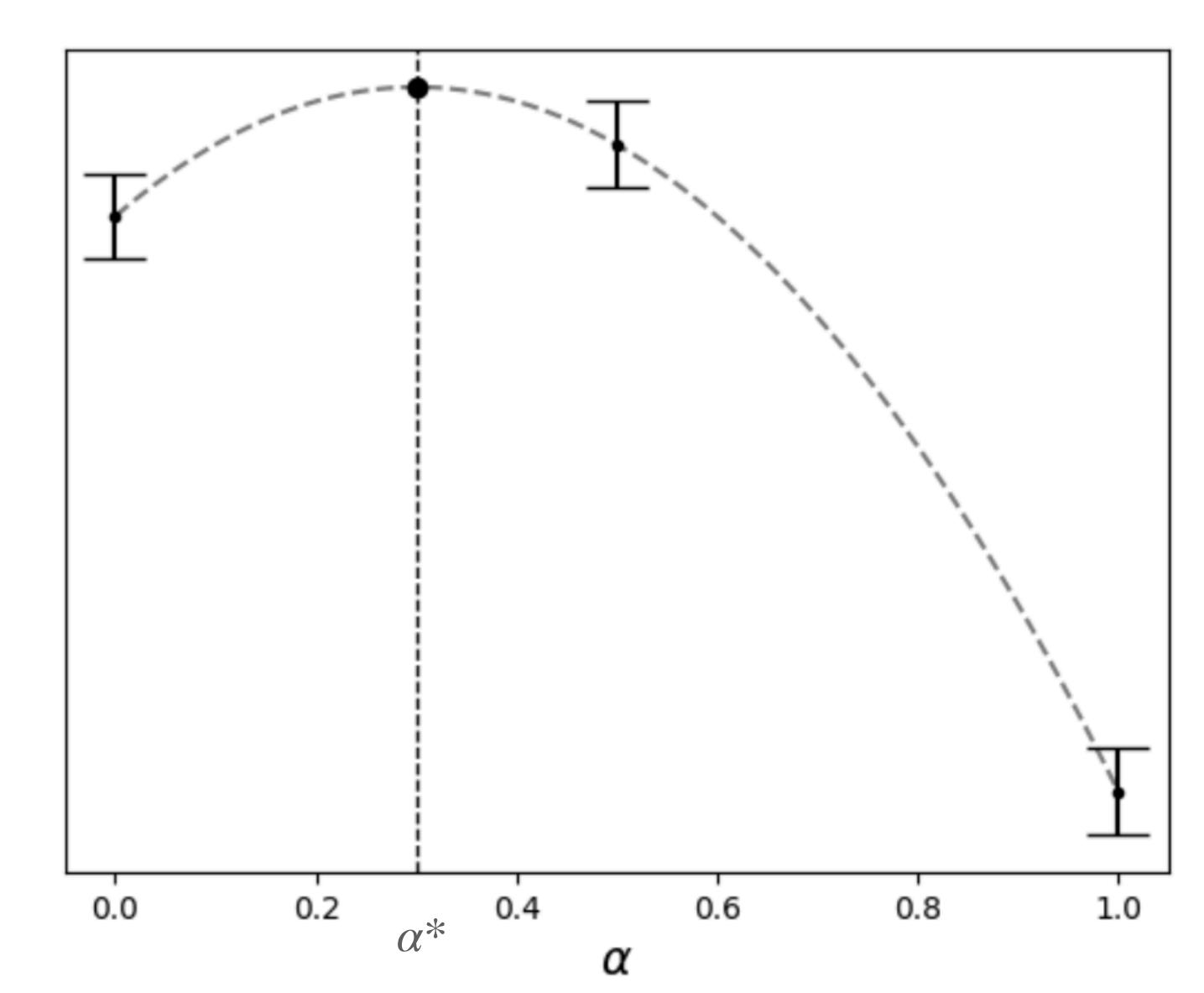
A: Current prod version

B: $\alpha = 0.3$

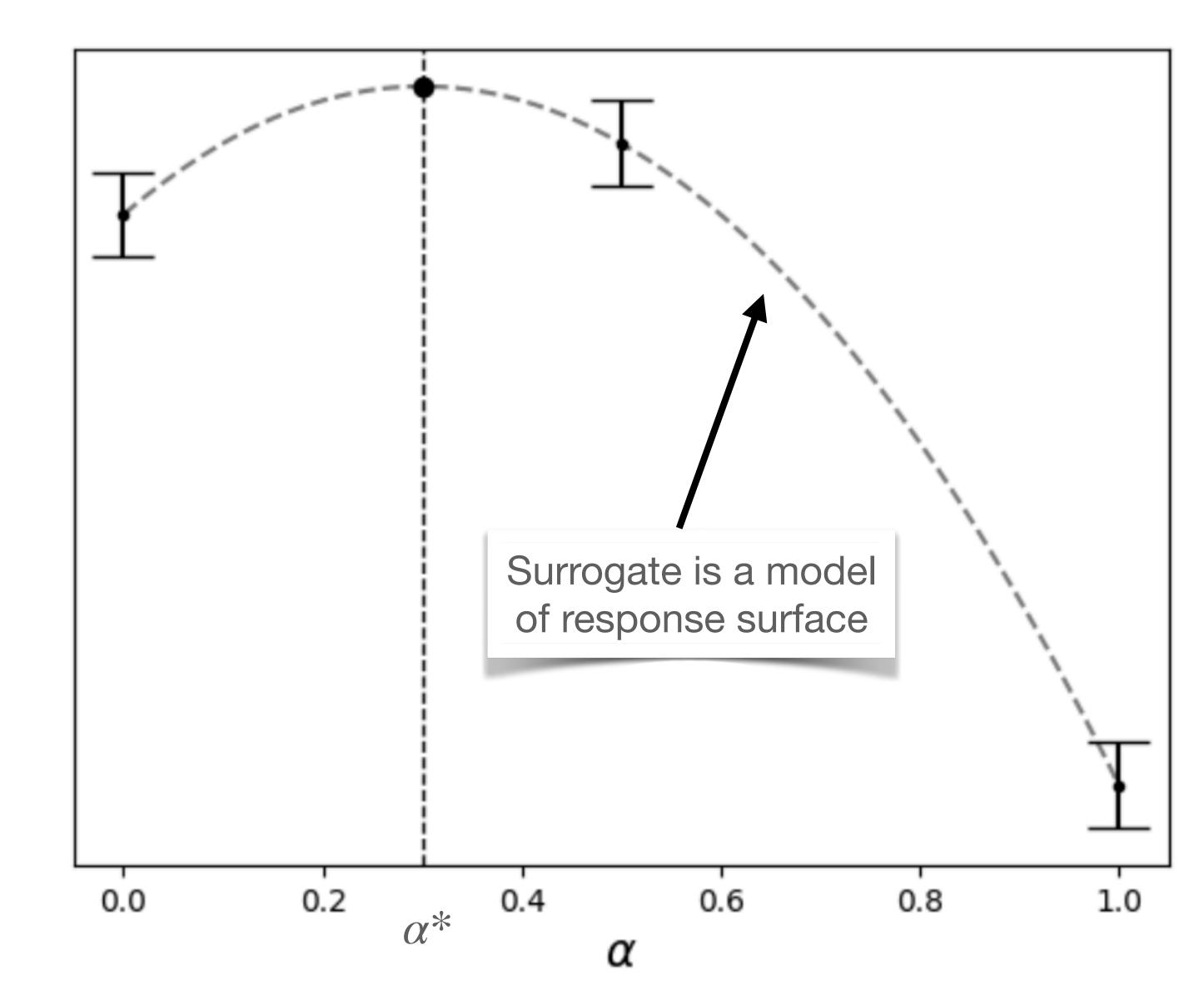
 A/B test validates inference (or invalidates)



- Function being modeled is BM vs. α
 - y = BM
 - $x = \alpha$ (parameter)
- E[y(x)]: Expected BM as function of parameter, x



- Unobservable, "true" BM function, E[y(x)], called response surface
- Our fit parabola (dashed) called surrogate function (or just surrogate)
- Response surface method:
 - Model, optimize, validate



Compare A/B test to RSM

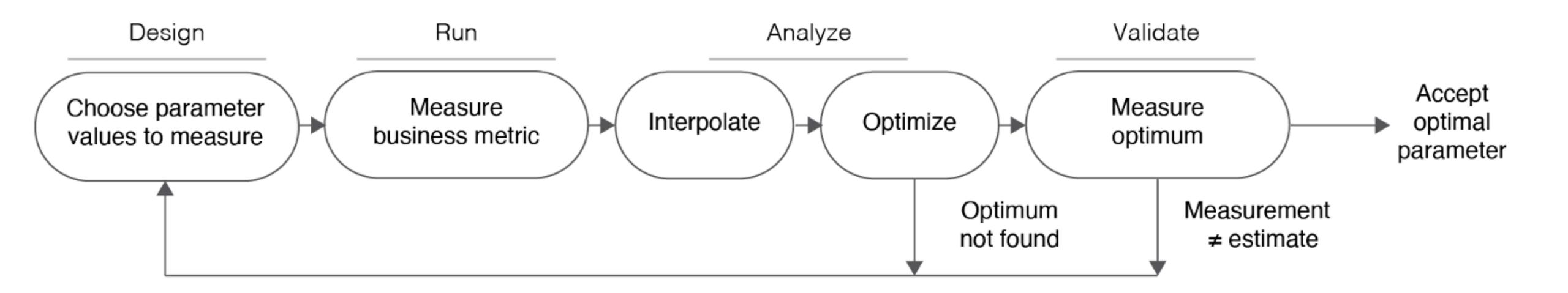
- A/B tests and MABs compare distinct versions of system
- RSM compares continuous family of systems
 - IOW, RSM finds optimal value of a continuous parameter

A/B Test	RSM
BM	BM
BM(A), BM(B)	BM(x)
y, E[y]	y(x), E[y(x)]

Compare A/B testing to RSM

- Parameter types:
 - Categorical: A, B, C, ...; true/false; red/green/blue; low/medium/high
 - Ordinal: 1, 2, 3, 4, ...
 - Continuous: [0.0, 1.0]; [-3.14, 3.14]; real, double, float
- Think of
 - A/B testing as optimization over a categorical parameter
 - RSM as optimization over a continuous parameter

Response-surface methodology (RSM) Summary of method



Validate optimum

- Surrogate (model of RS) is only an approximation
- Validate by measuring at the predicted-best parameter
 - A/B test (or MAB) just best vs. old prod

Use N from A/B testing

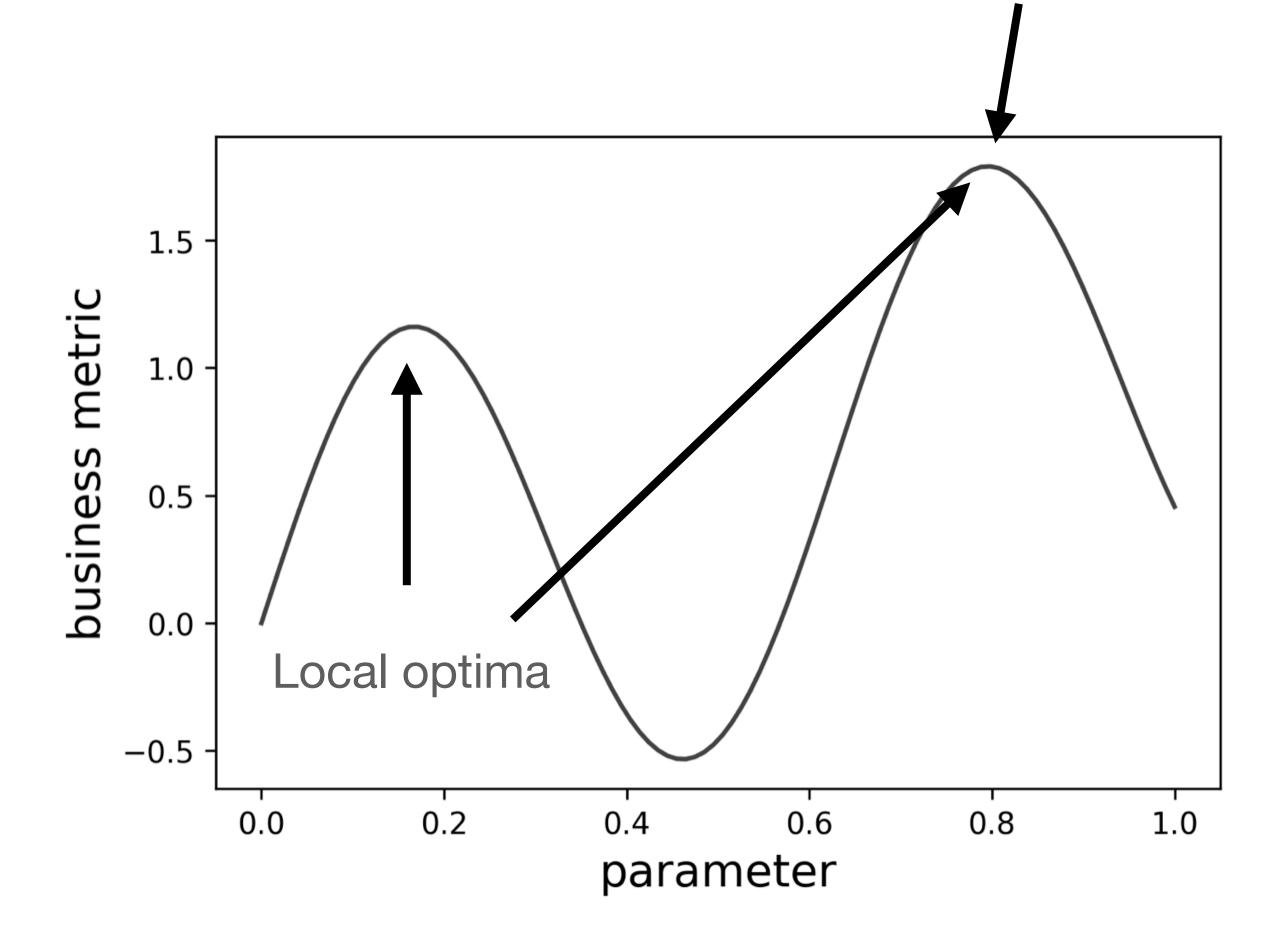
RSM measurements are aggregate measurements

. Use
$$N = (\frac{2.48\hat{\sigma}}{PS})^2$$

- PS here says "If the BM of two parameters is within PS, I'll treat them as equivalent"
- Alternatively, "I want to be within PS of the true optimum"

Local vs. global optima

- Respons surface might have multiple humps
- You want the highest hump
- RSM will only search locally
- Think hard about parameter range
- Local optimum is better than nothing



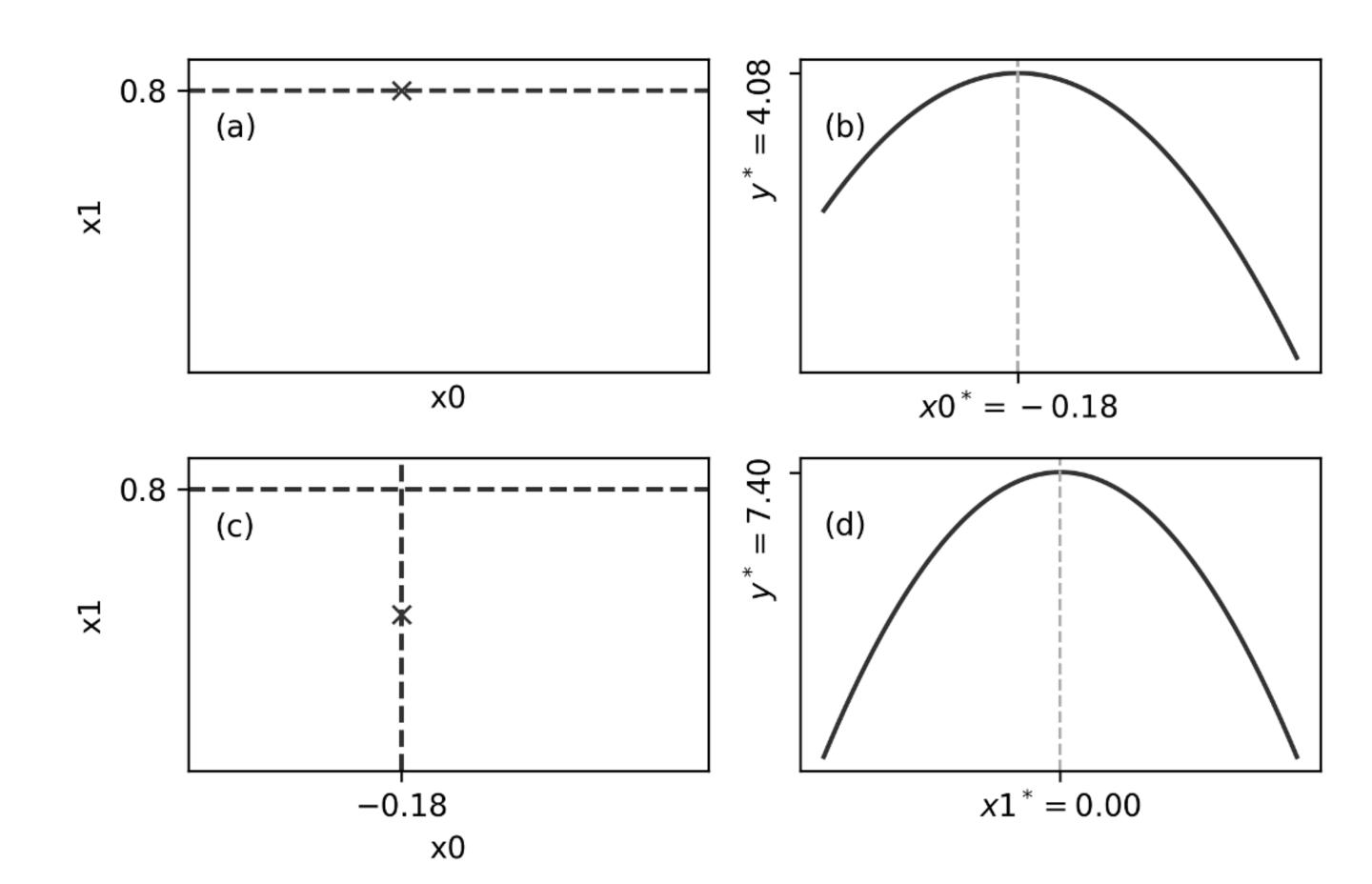
Global optimum

Interactive, manual process

- Engineer chooses
 - Region of interest (ROI): range of parameter(s) to investigate
 - Design of experiment: which specific parameter values to measure
 - Form of model parabola? multiple parameters
- May make decisions via visualization of surrogate
- ROI "recentered" on each iteration

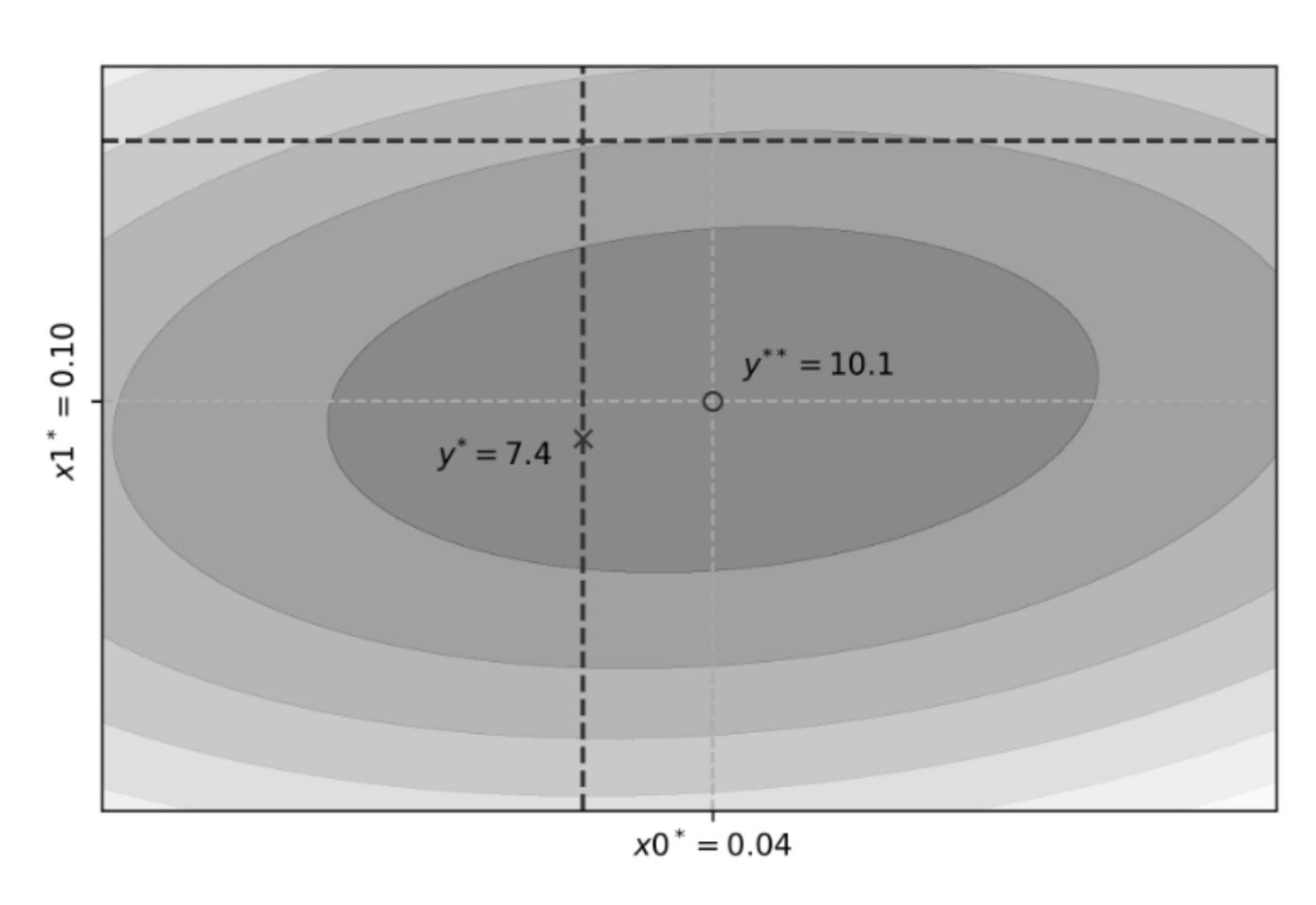
Multiple parameters

- $Ex x_0, x_1$
- Optimize x_0
- Optimize x_1
- OFAT: One factor at a time
 - Suboptimal approach



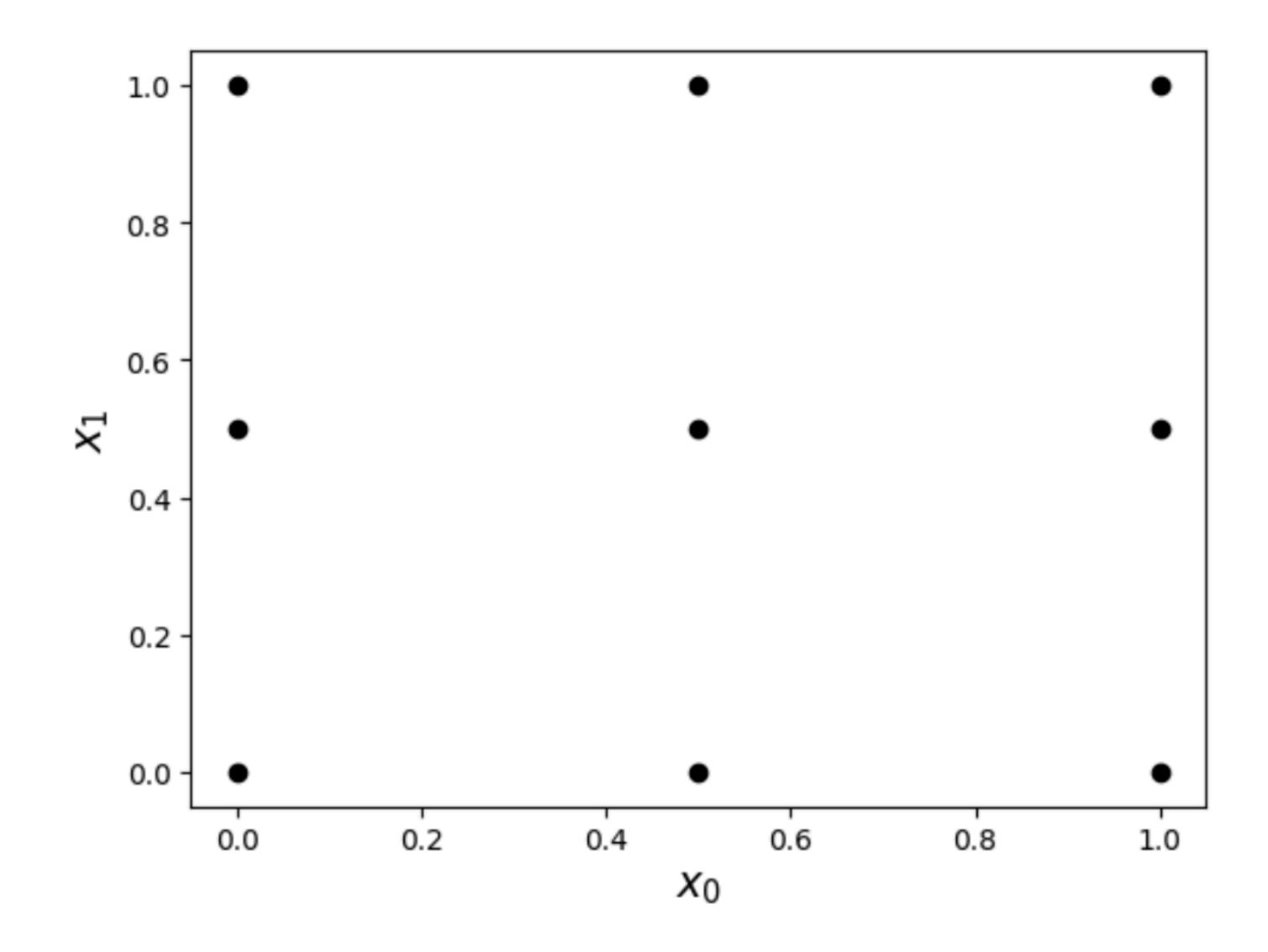
Multiple parameters

- OFAT finds $y^* = 7.4$
- RSM applied simultaneously to x_0, x_1 finds $y^* = 10.1$
- Realistically:
 - System has many parameters
 - "A few at a time" is typically as a good as it gets



Two-parameter RSM

- Two parameters (dimensions)
 - Take 9 measurements on a grid
 - Fit surrogate $y(x_0, x_1)$
 - Optimize to find x_0^*, x_1^*
 - A/B test A=current, B= x_0^* , x_1^*



- Surrogate model: linear regression
- Ex: $y = \beta_0 + \beta_1 x + \varepsilon$

Aggregate measurements, not observations

- Take measurements $\{(y_0, x_0), (y_1, x_1), (y_2, x_2), \dots (y_m, x_m)\}$
- Fit model

$$\beta_0 = \frac{\sum_i y_i}{m}, \beta_1 = \frac{\sum_i x_i y_i}{\sum_i x_i x_i}$$

• Parabola: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$

• Two parameters (dimensions, 2D)

•
$$y = \beta_0 + \beta_{1,0}x_0 + \beta_{1,1}x_1 + \beta_{2,0,0}x_0^2 + \beta_{2,1,1}x_1^2 + \beta_{2,0,1}x_0x_1 + \varepsilon$$

• notation: $y \sim x_0 + x_1 + x_0^2 + x_1^2 + x_0x_1$

even better:
$$y \sim \sum_{i}^{2} x_i + \sum_{i}^{2} \sum_{j}^{2} x_i x_j$$

$$y \sim \sum_{i}^{2} x_i + \sum_{i}^{2} \sum_{j}^{2} x_i x_j$$

• Fit: $\vec{\beta} = (X^{\mathsf{T}}X)^{-1}(X^{\mathsf{T}}y)$

- First column of X is all ones
- NumPy: beta = np.linalg.inv(X.T @ X) @ (X.T @ y)
- Works for any number of dimensions (parameters)

More parameters

3D:
$$y \sim \sum_{i}^{3} x_{i} + \sum_{i}^{3} \sum_{j}^{3} x_{i}x_{j}$$

- d dimensions: $y \sim \sum_{i}^{d} x_i + \sum_{i}^{d} \sum_{j}^{d} x_i x_j$
- Too many terms for only a few measurements
- Use automated variable selection and/or domain knowledge to limit terms

Summary

- RSM introduces
 - surrogate: model of response function
 - optimization of surrogate
- RSM is interactive/manual
 - Engineer decides ROI, design, and form of surrogate
- A/B testing: categorical:: RSM: continuous